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Abstract—Building an infrastructure for Exascale applications
requires, in addition to many other key components, a stable
and efficient failure detector. This paper describes the design
and evaluation of a robust failure detector, able to maintain and
distribute the correct list of alive resources within proven and
scalable bounds. The detection and distribution of the fault infor-
mation follow different overlay topologies that together guarantee
minimal disturbance to the applications. A virtual observation
ring minimizes the overhead by allowing each node to be observed
by another single node, providing an unobtrusive behavior. The
propagation stage is using a non-uniform variant of a reliable
broadcast over a circulant graph overlay network, and guar-
antees a logarithmic fault propagation. Extensive simulations,
together with experiments on the Titan ORNL supercomputer,
show that the algorithm performs extremely well, and exhibits
all the desired properties of an Exascale-ready algorithm.

Index Terms—MPI, Failure Detection, Fault-Tolerance

I. INTRODUCTION

Failure detection is a prerequisite to failure mitigation and a

key component to any infrastructure requiring resilience. This

paper is devoted to the design and evaluation of a reliable algo-

rithm that will maintain, and distribute the updated list of alive

resources with a guaranteed maximum delay. We consider

a typical High-Performance Computing (HPC) platform in

steady-state operation mode. Because in such environments the

transmission time can be considered as bounded (although that

bound is unknown), it becomes possible to provide a perfect
failure detector according to the classical definition of [7]. A

failure detector is a distributed service able to return the state

of any node, alive or dead (subject to a crash)1. A failure

detector is perfect if any node crash is eventually suspected

by all surviving nodes, and if no surviving node ever suspects

a node that is still alive. Critical fault-tolerant algorithms for

HPC, and implementations of communication middleware for

unreliable systems rely on the strong properties of perfect

failure detectors (see e.g. [9], [14], [5], [6], [19]). Their cost, in

terms of computation and communication overhead, as well as

their properties in terms of latency to detect and notify failures

and of reliability, have thus a significant impact on the overall

performance of a fault-tolerant HPC solution.

While we focus primarily on of one the most widely

used programming paradigms, the Message Passing Interface

(MPI), the techniques and algorithms proposed have a larger

scope, and are applicable in any resilient distributed program-

ming environment. We consider the platform as being initially

1We use the words failure, crash, or death indifferently.

Platform parameters
N Initial number of nodes
τ Upper bound on the time to transfer a message

Protocol parameters
η Period for heartbeats
δ Time-out for suspecting a failure

TABLE I: List of Notations.

composed of N nodes, but with a high probability, some

of these resources will become unavailable throughout the

execution. When exposed to the crash of one node, traditional

applications would abort. However, the applications that we

consider, are augmented with fault tolerant extensions that

allow them to continue across failures (e.g. [4]), either using

a generic or an application-specific fault tolerant model. The

design of this model is outside the scope of this paper, but

without loss of generality, we can safely assume that any

fault tolerant recovery model requires a robust fault detection

mechanism. Our goal is to design such a robust protocol that

can detect all failures and enable the efficient repair of the

execution platform.

By repairing the platform, we mean that all surviving nodes

will eventually be notified of all failures, and will therefore be

able to compute the list of surviving nodes. The state of the

platform where all failed nodes are known to all processes

is called a stable configuration (note that nodes may not be

aware that they are in a stable configuration).

By robust, we mean that regardless of the length of the

execution, if a set of up to f failures disrupt the platform

and precipitate it into an unstable configuration, the protocol

will bring the platform back into a stable configuration within

T (f) time units (we will define T (f) later in the paper). Note

that the goal is not to tolerate up to f failures overall. On

the contrary, the protocol will tolerate an arbitrary number of

failures throughout an unbounded-length execution, provided

that no more than f successive overlapping failures strike

within the T (f) time-window. Hence, f induces a constraint

on the frequency of failures, and not on the total number of

failures.

By efficiently, we aim at a low-overhead protocol that

limits the number of messages exchanged to detect the faults

and repair the platform. While we assume a fully-connected

platform (any node may communicate with any other), we

use a realistic one-port communication model [3], where

a node can send and/or receive at most one message at

any time-step. Independent communications, involving distinct

sender/receiver pairs, can take place in parallel: however, two

messages sent by the same node will be serialized.
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These goals seem contradictory but they only call for a

carefully designed trade-off: as shown in [10], [17], [20],

system noise created by the messages and computations of the

fault detection mechanism, can impose significant overheads

in HPC applications, hence the efficiency of the approach

must be carefully assessed. The overhead should be kept

minimal in the absence of failures, while failure detection and

propagation should execute quickly, which usually implies a

robust broadcast operation that introduces many messages. The

major contributions of this work are as follows:

• A proven algorithm for failure detection, based on a robust

protocol that tolerates an arbitrary number of failures, provided

that no more than f consecutive failures strike within a time

window of duration T (f);
• The protocol has minimal overhead in failure-free operation,

with a unique observer per node;

• The protocol achieves failure detection and propagation in

logarithmic time for up to fmax = �log n� − 1 where n is the

number of alive nodes. More precisely, the bound T (fmax) is

deterministic, and logarithmic in n, even in the worst case;

• All performance guarantees are expressed within a realistic

one-port communication model;

• Extensive simulations and experiments with ULFM [4] show

very good performance of the algorithm.

The rest of the paper is organized as follows. We start

with an informal description of the algorithm in Section II.

We detail the model, the proof of correctness and the time-

performance analysis in Section III. Then we assess the effi-

ciency of the algorithm in a practical setting, first by reporting

on a comprehensive set of simulations in Section IV, and

then by discussing experimental results on the ORNL Titan

supercomputer in Section V. Section VI provides an overview

of related work. Finally, we outline conclusions and directions

for future work in Section VII.

II. ALGORITHM

This section provides an informal description of the algo-

rithm. We refer to Section III for a detailed presentation of the

model, a proof of correctness and a time-performance analysis.

We maintain two main invariants in the algorithm:

1) Each alive node maintains its own list of known dead

resources;

2) Alive nodes are arranged along a ring and each node

observes its predecessor in the ring. In other words, the

successor/observer receives heartbeats from its predeces-

sor/emitter (see below).

When a node crashes, its observer broadcasts the information

and reconnects the ring: from now on, the observer will

observe the last known predecessor (accounting for locally

known failures) of its former predecessor. The rationale for

using a ring for detection is to reduce the overhead in the

failure free case: with only one observer, a minimal number

of heartbeat messages have to be sent. We use the protocol

suggested in [8] for fault detection. Consider a node q observ-

ing a node p. The observed node p is also called the emitter,

because it emits periodic heartbeat messages m1,m2, . . . at

time σ1, σ2, . . . to its observer q, every η time units. Now let

Algorithm 1 Sketch of the failure detector for node i.

1: task Initialization

2: emitteri ← (i− 1) mod N
3: observeri ← (i+ 1) mod N
4: HB-TIMEOUT ← η
5: SUSP-TIMEOUT ← δ
6: Di ← ∅
7: end task
8:

9: task T1: When HB-TIMEOUT expires

10: HB-TIMEOUT ← η
11: Send HEARTBEAT(i) to observeri

12: end task
13:

14: task T2: upon reception of HEARTBEAT(emitteri)
15: SUSP-TIMEOUT ← δ
16: end task
17:

18: task T3: When SUSP-TIMEOUT expires

19: SUSP-TIMEOUT ← 2δ
20: Di ← Di ∪ emitteri

21: dead← emitteri

22: emitteri ← FindEmitter(Di)
23: Send NEWOBSERVER(i) to emitteri

24: Send BCASTMSG(dead, i,Di) to Neighbors(i,Di)
25: end task
26:

27: task T4: upon reception of NEWOBSERVER(j)
28: observeri ← j
29: HB-TIMEOUT ← 0
30: end task
31:

32: task T5: upon reception of BCASTMSG(dead, s,D)
33: Di ← Di ∪ {dead}
34: Send BCASTMSG(dead, s,D) to Neighbors(s,D)
35: end task
36:

37: function FindEmitter(Di)
38: k ← emitteri

39: while k ∈ Di do
40: k ← (k − 1) mod N

41: return k

42: end function

σ′
i = σi + δ. At any time t ∈ [σ′

i, σ
′
i+1), q trusts p if it has

received heartbeat mi or higher. Here, δ is the time-out after

which q suspects the failure of p. Assume there are initially N
alive nodes numbered from 0 to N−1, and node i+1 mod N
observes node i according to the previous protocol, for all

0 ≤ i ≤ N − 1. Tasks T1 and T2 in Algorithm 1 execute this

basic observation node, with the time-out delay being reset

upon reception of a heartbeat. Note that [8] shows that this

protocol, where the emitter spontaneously sends heartbeats to

its observer, exhibits better performance than the variant where

observers reply to heartbeat requests.

What happens when an observer (node i) suspects the

crash of its predecessor in the ring? Task T3 in Algorithm 1

implements two actions. First, it updates the local list Di of
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dead nodes with the identity of its emitter and then reconnects

the ring (lines 19 to 23); and second, it initiates a reliable

broadcast informing all nodes in its current list of alive nodes

about the crash of its predecessor (line 24).

The first action, namely the reconnection of the ring, is taken

care of by the procedure FindEmitter(Di): node i searches its

list of dead resources Di and finds the first (believed) alive

node, j, preceding it in the ring. It assigns j as its new emitter

and sends a message NEWOBSERVER informing j that i has

become its observer. Node i also sets a timeout to 2δ time

units, a period after which it will suspect its new emitter, j,

if it has not received any heartbeat. Task T4 implements the

corresponding action at the emitter side.

The second action for node i is the broadcast of the

crash to all alive nodes (according to its current list). A

message BCASTMSG(dead, i,Di) containing the identity of

the crashed node dead, the source of the broadcast i, and the

locally known list of dead nodes Di is broadcast to all alive

nodes (according to the current knowledge of node i). We now

detail how this procedure works. Let A be the complement

of Di in {0, 1, . . . , N − 1}, and let n = |A|. The elements

of A are labeled from 0 to n − 1, where the source i of

the broadcast is labeled 0. The broadcast is tagged with a

unique identifier and involves only nodes of the labeled list A
(this list is computable at each participant as Di is part of the

message). Because n is not necessarily a power of two, we

have a complication2. Letting k = �log n� (all logarithms are

in base 2), we have 2k ≤ n < 2k+1. We use twice the reliable

hypercube broadcast algorithm (HBA) of [25]. The first HBA

call is from the source (label 0) to the sub-cube of nodes j,

where 0 ≤ j ≤ 2k, and the second HBA call is from the

same source (label 0) to the sub-cube of nodes n− j mod n,

where 0 ≤ j ≤ 2k. Each HBA call thus involves a complete

hypercube of 2k nodes, and their union covers all n nodes

(with some overlap). The HBA algorithm delivers multiple

copies of the broadcast message through disjoint paths to

all the nodes in the system. Each node executes a recursive

doubling algorithm and propagates the received information

to up to k participants ahead of it, located at distance 2k for

0 ≤ j ≤ 2k. For simplicity we refer to both HBA calls as a

single broadcast in our algorithm.

Upon reception of a broadcast message including a source

s and a list of dead nodes D, any alive node i can reconnect

the complement list A of nodes involved in the broadcast

operation and their labels, and then compute the ordered set

of neighbors Neighbors(s,D) to which it will then forward

the message. We stress that the same list D, or equivalently

the same set of participating nodes, is used throughout the

broadcast operation, even though some intermediate nodes

might have a different knowledge of dead and alive nodes.

This feature is essential to preserving fault-tolerance in the

algorithm of [25]. Indeed, we know from [25] that each sub-

hypercube broadcast is guaranteed to complete provided that

there are no more than k − 1 dead nodes within participating

nodes (set A) while the broadcast executes.

2Delay-bounded fault-tolerant broadcasts are not easily obtained for arbi-
trary values of n, see the discussion in Section VI-B.

III. MODEL & PERFORMANCE ANALYSIS

This section provides a detailed presentation of the model,

and a proof of correctness of the algorithm, together with a

worst-case time-performance analysis.

A. Model

1) General Framework: Nodes can communicate by send-

ing messages in communication channels, expected to be loss-

less and not ordered. Any node can send a message to any

other node. Messages in the communication channel (p, q) take

a random time Tp,q to be delivered, which has an upper bound

τ . We consider executions where nodes can crash permanently

at any time. If a node p crashes, then all communication

channels to p are emptied, p does not send any message nor

execute any local assignment.

Note that τ is a property of the platform, that represents

the maximal time that separates a process entering a send op-

eration, and the destination process having the corresponding

message ready to read in its memory. While the exact value

for τ is generally unknown, it can be bounded in our case,

using the techniques described in Section V-A. The algorithm

uses δ > τ as a bound to define the limit after which a node is

suspected dead. Tuning the value of δ as close as possible to

τ , without underestimating τ to guarantee that false positives

are not detected, is an operation that must be fitted for each

target platform. Thus, in the theoretical analysis, we use τ
to evaluate the worst case of a communication that succeeds,

while the algorithm must rely on δ to detect a failure.

2) Using the One-Port Model: While we assume a fully-

connected platform (any node may communicate with any

other), we use a realistic one-port communication model [3]

where a node can send and/or receive at most one message at

any time-step. Independent communications, involving distinct

sender/receiver pairs, can take place in parallel: however, two

messages involving the same node will be serialized. Using

the one-port model while aiming at a low-overhead protocol

is a key motivation to this work. It is not realistic to assume

that each node would observe any other node, or even a

large subset of nodes: while this would greatly facilitate the

diffusion of knowledge about a new crash, and speed-up the

transition back to a stable configuration, it would also incur a

tremendous overhead in terms of heartbeat messages, and in

the end dramatically impact the throughput of the platform.

Because all messages within our algorithm have a small-

size, we model our communications using a constant time τ to

send a message from one node to another. We could have used

a traditional model such as LogP, or used a start-up overhead

plus a time proportional to the message size, but since we

use this only as an upper bound, this would complicate the

analysis unnecessary. Under the one-port model, the HBA

algorithm [25] with 2k nodes executes in 2kτ , provided that no

more than k− 1 crashes strike during its execution. The time

for one complete broadcast algorithm in Algorithm 1 would

then be (upper bounded by) 4τ log n in the absence of any

other messages, since we use two HBA calls in sequence. But

our algorithm also requires heartbeats to be sent along the ring,

as well as NEWOBSERVER messages when ring reconnection
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is needed. Assuming that η ≥ 3τ (where η is the heartbeat

period), we can always insert broadcast and NEWOBSERVER

messages in between two successive heartbeats, thereby guar-

anteeing that a broadcast in Algorithm 1 will always execute

within B(n) = 8τ log n, assuming no new failure interrupts

the broadcast operation.

3) Stable Configuration and Stabilization Time: Here we

consider executions that, from the initial configuration, reached

a steady state before a failure hit the system and made it leave

that steady state. To prove the correctness of our algorithm, we

show that in a given time, the system returns to a steady state,

assuming that no more than a bounded number of failures

strike during this time.

Connected Node A node p is connected with its successor
in a configuration, if p is alive and emitterp is the closest

predecessor of p that is alive (on the ring). It is connected
with its predecessor if it is alive, and observerp is the

closest successor of p that is alive in that configuration. It

is reconnected if it is connected with both its successor and

predecessor. If all processors are reconnected, we say the ring

is reconnected.

Stable Configuration A configuration C is the global state of

all processes plus the status of the network. A configuration

is declared as stable, if any alive node p is reconnected in C
and for any node q, q ∈ Dp ⇐⇒ q is dead in C.

Stabilization Time T (f), with f being the number of over-

lapping failures, is the duration of the longest sequence of non

stable configurations during any execution, assuming at most

f failures during the sequence.

B. Correctness and Performance Analysis

The main result is the following proof of correctness, that

provides a deterministic upper bound on the Stabilization Time
T (f) of the algorithm with at most f overlapping faults:

Theorem 1. With n ≤ N alive nodes, and for any f ≤
�log n� − 1, we have

T (f) ≤ f(f + 1)δ + fτ +
f(f + 1)

2
B(n) (1)

where B(n) = 8τ log n.

This upper bound is pessimistic for many reasons, which

are discussed after the proof. But the key point is that the

algorithm tolerates up to �log n� − 1 overlapping failures in

logarithmic time O((log n)3).

Proof. Starting from a non stable configuration, the next stable

configuration will be reached when (i) all nodes are informed

of the different failures via the broadcast, and (ii) processes

of the ring are reconnected. Recall that every time a node has

detected a failure, it initiates a broadcast that executes within

B = B(n) = 8τ log n time units, and which is guaranteed

to reach all alive nodes as long as f ≤ �log n� − 1. Because

we interleave reconnection messages within the broadcast, B
encompasses both the broadcast and the reconnection. How-

ever, due to the one-port model, we cannot assume anything

8
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Fig. 1: Segments of dead nodes after f = 3 failures: n = 9, k = 2, I1 =
{2, 3}, I2 = {5}, d1 = 2 and d2 = 1.

about the pipelining of several consecutive broadcast opera-

tions. In this proof, we make a first simplification by over-

approximating T (f) as the maximum time R(f) to reconnect

the ring after f overlapping failures, plus the time to execute

all the broadcasts that were initiated, in sequence (assuming

no overlap at all). We prove an upper bound on R(f) by

induction, letting R(0) = 0:

Lemma 1. For 1 ≤ f ≤ �log n� − 1, we have

R(f) ≤ R(f − 1) + 2fδ + τ (2)

Proof. We first prove Equation (2) when f = 1. Assume that

node p, observed by node q, fails. After receiving the last

heartbeat, q needs δ time units to detect the failure (line 15 of

Algorithm 1). Thus, the worst possible scenario is when p fails

right after sending a heartbeat, which will take τ time units

to reach q. Thus q detects the failure after τ + δ time units.

Finally, q sends the reconnection message to the predecessor

of p, which will take τ , hence R(1) ≤ 2τ + δ. We keep the

over-approximation R(1) ≤ τ +2δ to simplify the formula in

the general case.

Assume now that Equation (2) holds for all f ≤ �log n�−2.

Now consider an execution with f+1 overlapping failures, the

first of them striking at time 0 (see Figure 2). The (f + 1)-th
failure strikes at time t. Necessarily t ≤ R(f), otherwise the

ring would have been reconnected after f failures, and the last

one would not be overlapping. There are f dead nodes just

before time t among the original n alive nodes, which define

k ≤ f segments Ii, 1 ≤ i ≤ k. Here, segment Ii is an interval

of di ≥ 1 consecutive dead nodes (see Figure 1). Of course∑k
i=1 di = f , and there remain n− f alive nodes. There are

multiple cases depending upon which node is struck by the

(f + 1)-th failure at time t:
(a) The new failure strikes a node that is neither a prede-

cessor nor a successor of a segment (e.g., the failure strikes

node 7 in Figure 1). In that case, a new segment of length 1
is created, and the ring is reconnected at time t+R(1).

(b) The new failure strikes a node p that precedes a segment

Ii. Let q be the successor of the last dead node in Ii. By

definition, q �= p. There are two sub-cases: (i) The predecessor

p′ of p is still alive (e.g., the failure strikes node 1 preceding

segment I1 in Figure 1, q = 4 and p′ = 0 is alive). Then the

size of segment Ii is increased by one. In the worst case, q is

not aware of the death of any node in Ii at time t, and needs to

probe all these nodes one after the other before reconnecting

with p′ (in the example, q = 4 needs to try to reconnect with
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2 and 1 since it is not aware of their death). This costs at most

(di + 1)(2δ) + τ ≤ 2(f + 1)δ + τ , because di + 1 ≤ f + 1,

hence the ring is reconnected at time t + 2(f + 1)δ + τ . (ii)

The predecessor p′ of p is dead (e.g., the failure strikes node 4
preceding segment I2 in Figure 1, q = 6 and p′ = 3 is dead).

Then p′ is the last node of another segment Ij . In that case,

segments Ii and Ij are merged into a new segment of size

di+ dj +1 ≤ f +1. Just as before, in the worst case, q is not

aware of the death of any node in that new segment, and the

reconnection costs at most (di+dj+1)(2δ)+τ ≤ 2(f+1)δ+τ
(see Figure 2 for an illustration). Hence the ring is reconnected

at time t+ 2(f + 1)δ + τ .

(c) The new failure strikes a node p that follows a segment

Ii. Let q be the successor of p. If q is alive, it now follows a

segment of size di + 1. If q is the first dead node of segment

Ij , let r be the node that follows Ij . Now r follows a segment

of size di + dj +1. In both cases, we conclude just as before.

This completes the proof of Lemma 1.

From Lemma 1, we easily derive by induction that

R(f) ≤ f(f + 1)δ + fτ

for all values of f ≤ �log n�−1. During the ring reconnection,

processes that discover a dead process initiate a broadcast of

that information. We need to count, in the worst case, how

many broadcasts are initiated to compute how long it takes

for the information to be delivered to all nodes.

Lemma 2. Let pi, 1 ≤ i ≤ f ≤ �log n� − 1 be the i − th
process subject of a failure. In the worst case, at most f−i+1
processes can detect the death of pi.

Proof. A process p is discovered dead by process q in Task

T3, if emitterq = p. In that case, p is added to Dq , and

emitterq is re-computed using FindEmitter. That function

cannot return any process in Dq , and p is never removed from

Dq . Thus, q will never discover the death of p again. As long

as q lives, no other process q′ will execute the task T3 with

emitterq′ = p, because q is an alive process between q′ and

p in the ring. Thus, q must fail after p, for p to be discovered

once more. Since there are at most f faults, pi, the i − th
failed process can thus be discovered dead by at most f−i+1
processes.

We derive from Lemma 2 that at most
∑f

i=1(f − i+ 1) =
f(f+1)

2 broadcasts are initiated. Finally, the information on the

f dead nodes must reach all alive nodes. For each segment

Ii, there is a last failure after which the broadcast initiated

by the observing process is not interrupted by new failures.

That broadcast operation thus succeeds in delivering the list of

newly discovered dead processes to all others (di ≤ �log n�−
1). In the worst case, that broadcast operation is the last to

complete. As already mentioned, we conservatively consider

that all the broadcast operations execute in sequence. Since

there are at most
f(f+1)

2 broadcast operations initiated , we

obtain T (f) ≤ R(f) + f(f+1)
2 B(n), which leads to the upper

bound in Equation (1) and concludes the proof of Theorem 1.

0 421 3

HB τ + δ ≤ 2δ to detect the
failure of 3

NO 4 detects failure of 2 after 2δ
This failure increases the size
of segment I1 = {3} by
one, now I1 = {3, 2}

NO 4 detects failure of 1 after 2δ
This failure increases the size
of the segment I1 = {3, 2} by
one, now I1 = {3, 2, 1}

NO

Ring reconnected
HB B(n)

B(n)

B(n)

Bcast

Broadcast messages of the
failure of processes 3, 2 and 1

T (3, C)

HB=HEARTBEAT

NO=NEWOBSERVER
Bcast=Broadcast Operation

Fig. 2: From stable configuration C, growing segment I1 of Figure 1: first
failure on node 3, next two failures striking its ring predecessors.

The bound on T (f) given by Equation (1) is quite pes-

simistic. We can identify three levels of complexity with their

corresponding bounds on T (f). In the most likely scenario,

where the time between two consecutive faults is larger than

T (1), the system has time to return to a stable configuration

before the second fault, in which case all faults can be

considered as independent, and the average stabilization time

is T (1) = R(1) + B(n) = O(log n). If the system suffers

quickly overlapping faults, the location of impacted nodes

becomes important. However, the larger the platform, the

smaller the probability that successive faults strike consecutive

nodes (2/n, where n is the number of alive nodes). Thus, on

large platforms, overlapping failures are more likely to strike

non consecutive nodes in the ring. If overlapping faults hit non

consecutive nodes rapidly, i.e., faster than the time needed by

the system to reach the next stable configuration, each error

is detected once, but due to the one-port model, the upper

bound on T (f) becomes R(1)+fB(n) = O(log2 n). Finally,

in the unlikely scenario where f quickly overlapping faults hit

f consecutive nodes in the ring, the Theorem 1 provides the

upper bound for T (f) ≤ R(f) + f(f+1)
2 B(n) = O(log3n).

C. Non Stabilization Risk Control

To guarantee convergence within T (f) time units, Algo-

rithm 1 assumes that f ≤ �log(n)� − 1. In order to evaluate

the risk behind this assumption, consider that failures strike

following an Exponential distribution of parameter λ. Let

PT (f) be the probability of the event “more than f failures
strike within time T”. Then PT (f) = 1− Σf

k=0
(λT )k

k! e−λT .

Consider a platform of n nodes: if μind is the MTBF of a

single node, then λ = n
μind

[15]. Let M = �log(n)� − 1, the

assumption that there will not be more than M failures before

stabilization is then true with probability PT (M)(M). In Fig-

ure 3, we represent this relation by showing the upper bound

of δ to enforce PT (M)(M) < 10−9, at variable machines scale

(n), and for different values of μind, with a message time bound

of τ = 1μs. Figure 3 illustrates that for all values of δ lower

than the bound shown for a given system size and individual

316



Fig. 3: Maximal value for δ to ensure that PT (M)(M) < 10−9 with τ = 1μs
and M = �log2(n)�.

node reliability, the probability that failures strike fast enough

to prevent Algorithm 1 from converging in T (f) is negligible

(less than 0.000000001). As already mentioned, this bound

on δ is a loose upper bound, because the bound on T (f) in

Equation (1) is loose itself. Furthermore, it captures the risk

that enough failures would strike during stabilization time to

make the appearance of the worst case scenario possible, even

though this worst case scenario has itself a very low probability

to happen (as shown in Sections IV and V). Still, for the largest

platforms with n = 256, 000 nodes, we find that δ ≤ 22s for

the most pessimistic μind = 20 years, and δ ≤ 60s if μind = 45
years results in timely convergence. With such large values,

the detector generates negligible noise to the applications, as

shown in Section V-C.

IV. SIMULATIONS

We conduct simulations and experiments to evaluate the per-

formance of the algorithm under different execution scenarios

and parameter settings. We instantiate the model parameters

with realistic values taken from the literature. The code for all

algorithms and simulations is publicly available [26], so that

interested readers can build relevant scenarios of their choice.

In this section, we report simulation results. See Section V for

experiments.

A. Simulation Settings

The discrete-event simulator imitates how the protocol of

Algorithm 1 would behave on a distributed machine of size n.

Messages between a pair of alive nodes in this machine take

a uniformly distributed time in the interval (0, τ ]. Failures are

injected following an exponential law of parameter λ = n/μind

(see Section III-C). In order to generate a manageable amount

of events, each heartbeat message and the corresponding

timeouts are not simulated, but the simulator asserts that a

timeout should have expired on the observer after the death of

its emitter, if the observer is alive at that time (otherwise, the

observer’s observer is going to react, following the protocol).

The simulator computes (i) the average time to reach a

stable configuration (all processes know all faults) starting

from a configuration with a single failure injected at time 0, (ii)

the average time to reach a configuration where all processes

know about the initial failure, and (iii) the average number

of failures striking during the time it takes to reach a stable

configuration, over a set of 10,000 independent runs.
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Fig. 4: Average Stabilization Time, when the maximal number of failures
strike a platform of varying size in the scenario LOWNOISE (δ = 1min, τ =
1μs, η = 10s).

We consider two main scenarios for the simulations. In both

scenarios, we target a large scale machine (up to 256,000

computing nodes) with a low latency interconnect (τ = 1μs).

In the scenario LOWNOISE, we set the failure detector so

as to minimize the overhead in the failure free case: η is

set to 10 seconds, and δ to 1 minute. We consider this

case significant for platforms where nodes are expected to be

reliable, or where alternative methods to detect most failures

exist; the heartbeat mechanism is then used as a last resort

solution, e.g. when special hardware providing a Baseboard

Management Controller and controlled through a protocol

like IPMI [30] is connected to the application notification

system. We also considered a scenario LOWLAT, with the

opposite assumptions, where active check through heartbeats

is the primary method to detect failures, and a low latency of

detection is required for the application: η = 0.1s, and δ = 1s.

B. Simulation Results

In Figure 4, we force the simulator to inject the maximum

number of failures tolerated by the algorithm for a given

platform size (�log2(n)� − 1) in a very short time, inferior

to δ, in order to evaluate the average stabilization time in the

most volatile environment. Varying the system size (n), and

the number of injected failures simultaneously, we evaluate the

time taken for the first failure to be notified to all processes,

and for all the processes to be notified of all the failures that

struck since the last stable configuration.

The figure considers scenario LOWNOISE. Points on the

graph show times reported by the simulator, while lines

represent functions fitted to these points, O( 1n + �log2(n)�)
for all know all failures (orange lines), and O( 1n ) for all know
the first failure (green lines).

In average, the first failure, striking at time 0, is detected

δ − η
2 seconds later, and this is the observed base line for

detecting the first failure at all nodes. The reliable broadcast

overhead in this case is negligible, because τ << δ and η.

There are a few executions in which, within the first δ seconds,

another failure hits the observer of the first failure, introducing

another δ delay to actually detect the first failure and broadcast

it. As the size of the machine increases, this probability

decreases. Such overlapping failure cases contribute to a longer

detection and notification time that can be fitted with a function

inversely proportional to the platform size, but have a low

probability to happen, introducing a measurable but small
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Fig. 5: Average Stabilization Time, with random overlapping failures in
scenario LOWNOISE (δ = 1min, τ = 1μs, η = 10s), with μind = 1year.

overhead at small scale. For general stabilization, where all

processes need to know all failures, the reliable broadcast

remains as fast as for the initial failure. However, if any failure

strikes before that broadcast phase is complete, this delays

reaching stabilization by another δ followed by a logarithmic

phase. As we observe in both figures, this shows at large scale,

where failures have a high probability to strike successively,

each introducing a constant overhead. The fitting function

thus shows the same inversely proportional property in the

beginning, then the logarithmic behavior starts to dominate at

large scale.

We conducted the same set of simulations on the LOWLAT

scenario, but cannot include them for lack of space. The

evaluation presents the exact same characteristics, shifted by

the ratio between the two values for δ.

We then consider the average case, when failures are not

forced to strike quasi-simultaneously. We set the MTBF of

independent components to a very pessimistic value (μind =
1year), making the MTBF of the platform decrease to a couple

of minutes at 256,000 nodes. Although we do not expect such

a pessimistic value in real platforms, we evaluate this case in

order to ensure that failures may occur before the initial one

is detected and broadcast (or stabilization would be reached

immediately after). Figure 5 presents the average number of

failures observed at different scales, the average time for all

nodes to know about the first failure, and the average time for

all nodes to know about all failures. Points represent values

given by the simulator, while lines represent fitting functions:

O(1) for the time for all to know the first failure, O(n) for the

average number of failures and the average time for all to know

all failures. We present here the scenario LOWNOISE, although

the result also holds for scenario LOWLAT, at a different scale.

This figure shows that, on average, and even with extremely

low MTBFs, the probability that two independent failures hit

the system in an overlapping manner (before the first failure is

known by all nodes) is very low. This happens when the MTBF

of the system becomes comparable to δ. In that case, the first

failure still takes close to a constant time to be notified to all.

This is because τ log2(n) remains very small compared to δ,

and once the broadcast is initiated, it completes in τ log2(n).
The successive failures may strike anytime between [0, δ],
delaying the time to reach the stable configuration by another

δ + τ log2(n). On average, at 256,000 nodes, this happens in

the middle of the initial failure detection interval, delaying the

completion by δ/2. Each failure, however, is independent in

that case, and each is detected almost δ time units after it

strikes.

V. EXPERIMENTAL EVALUATION

This section presents an experimental evaluation of an

operational implementation of the proposed failure detector

on the Titan ORNL supercomputer. We have implemented

the failure detection and propagation service in the reference

implementation of the User-Level Failure Mitigation (ULFM)

draft MPI standard [5], provided by OPEN MPI. ULFM is an

extension of the MPI standard that empowers MPI users (that

is, applications, library developers, or parallel programming

languages) to provide their own fault tolerant strategy. The

general design of ULFM relies on local semantics: failures

are notified to the user only in MPI calls that involve a failed

process, and a correct ULFM implementation will try to make

all operations succeed, if it can complete locally. Although

this relaxed design eases the implementation requirements

and delivers higher failure-free performance, the fact that

a failure is guaranteed to be detected only after an active

reception from the dead process can lead to an increase of

latency during failure recovery operations, because the same

process failures may be detected sequentially by multiple

processes, possibly at a much later time than when they were

first reported. Moreover, several routines imply necessarily

a communicator-wide knowledge on failures: operations like

MPI_COMM_AGREE and MPI_COMM_SHRINK need to build

consistent knowledge on (sub)sets of acknowledged failures;

a pending point-to-point reception from any source must

eventually raise an error, if it cannot complete because of the

death of a processor. Therefore, the addition of the failure

detection and propagation service provides an acceleration to

such scenarios, by eliminating delayed local observation of

the failure, which can then be immediately reported to the

upper-level, which can then act upon it quickly.

A. Implementation

The failure detector is composed of two components: the

observation ring, and the propagation overlay. The components

operate on a group of processes, which must be MPI consistent

(that is, identical at all ranks). The propagation topology

is implemented at the Byte Transport Layer (BTL) level,

which provides the portable low-level transport abstraction in

OPEN MPI.

The propagation overlay takes advantage of the Active

Message behavior of the OPEN MPI BTL’s. Each message,

with a size lesser than the “eager” protocol switch point,

contains the index of the callback function to be analyzed

by upon reception. This approach provides independence from

the MPI semantic (including matching). Upon the reception of

a propagation message, the message is forwarded according

to two possible algorithms. In the case where the overlay

is not corrected to incorporate the knowledge about failed

processes, thus the group can be considered as an invariant
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Fig. 6: Sensitivity to noise resulting from the failure detector activity for varied workloads.

during the entire execution, the message is forwarded as

is through the propagation topology which is constructed

every time a broadcast is initiated, according to the algorithm

presented in Section II, in order to guarantee the logarithmic

propagation delay. When the upper level declares, through a

runtime parameter, that it repairs its communicators after every

stabilization phase, the reliable propagation overlay can reduce

the size of the messages to include only the latest detected

failures, and the overlay is then built considering all processes

of the group.

The observation ring is also built at the BTL level. The emis-

sion of the heartbeats poses a particular challenge in practice.

The timely activation and delivery of heartbeats is of critical

importance to enforce the perfection of the detector, and the

bound on τ . Missing its η emission period deadlines puts the

emitter process at risk of becoming suspected by its observer,

even though it is still alive. If the heartbeats are emitted

from the application context, they can only be sent when the

application enters MPI routines, and consequently, a compute

intensive MPI application would often miss the η period. In our

implementation, the heartbeats are emitted from within a sep-

arate, library internal thread, in order to render their emission

independent from the application’s communication pattern.

For ease of implementation, the MPI_THREAD_MULTIPLE
support is enabled by default when the detector thread is

enabled; however, future software releases will drop this

requirement. An intricate issue also arises from a negative

interaction between the emission and the reception of heartbeat

messages. In order to check the liveliness of the emitter

process (after the δ timeout), the observer has to check if it

has received heartbeats. From an implementation perspective,

if the heartbeats are sent through the “eager” channel, the

detector thread, which is the receive thread in this case, has to

be active and poll the BTL engine for progress. However, if

the application has posted operations on large messages, the

poll operation may start progressing these (long) operations

before returning control to the detector thread, leading to an

unsafe delay in the emission of heartbeats from that same

thread. To circumvent that difficulty, the detector thread emits

heartbeats using the “RDMA put” channel. Heartbeats are thus

directly deposited by raising a flag in the registered memory

at the receiver, using hardware accelerated put operations that

do not require active polling. The observer can then simply

check that the flag has been raised during the last δ period

with a local load operation, and reset the flag with a local

store, which are mostly impervious to noise and do not delay

the η period. This approach also allows the observer to miss

δ periods without endangering the correctness of the protocol

(only increasing the time to detect and notify the failure, but

no triggering a false positive).

B. Experimental Conditions

The experiments are carried out on the Titan ORNL Su-

percomputer [27], a Cray XK7 machine with 16-core AMD

Opteron processors and the Cray Gemini interconnect. The

ULFM MPI implementation is based on a pre-release of

OPEN MPI 2.x (r#6e6bbfd), which supports the optimized

uGNI and shared-memory transports (without XPmem), and

uses the Tuned collective module. The MPI implementation is

compiled with the MPI_THREAD_MULTIPLE support. Every

experiment is repeated 30 times and we present the average.

The benchmarks are deployed with one MPI rank per core,

and all threads of an MPI process are bound to that same

core (application, detector, and driver threads when applicable,

i.e., the detector thread does not require exclusive compute

resources).

C. Noise and Accuracy

The first set of experiments investigate the noise generated

by the detector and its accuracy for different workloads when η
and δ vary, in a method similar to [20] that focused exclusively

on measuring the noise generated by different failure detection

strategies. The η and δ periods are set so that δ = 10× η. If

the test is successful (that is, no failure was detected, since

none was injected in this experiment), then η is reduced, and

the experiment is repeated, until a false positive is reported.

We also collect the number of times an η deadline was missed,

even when the δ timeout is still respected. We first considered

a non-communicative, compute-only MPI application where

each rank calls LAPACK DGEMM operations on local matrices,

without calling MPI routines for extended periods of time.
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Fig. 7: Detection and propagation delay, and impact on completion time of fault-tolerant agreement operation.

Without the detector thread, the non-communicative bench-

mark reports false detections for all considered values of η.

With the detector thread, this non-communicative benchmark

succeeds until η is set to one millisecond. However, starting

from η < 5 milliseconds, messages indicating a missed η
deadline are occasionally issued (although the δ timeout is

still respected). These observations are consistent with the

scheduling time quantums (sched_min_granularity is

set to 3ms), and indicate that the thread scheduling latency is

an absolute for the minimum η period. Smaller periods could

be achieved with a real time scheduler, but such capabilities

require administrative privileges, which is undesirable.

Next, in Figure 6 we present the noise incurred on a variety

of communication, and computation workloads, provided by

the Intel MPI Benchmark (version 4.1), and HPL (version

2.2), respectively. Accuracy results are similar overall in the

communicative benchmarks. All tests of the IMB-MPI1 suite

can run without false detection for η ≥ 10ms. Notably,

point-to-point only benchmarks can succeed with η value

as low as 2.5ms but occasionally report false suspicions.

Collective communication benchmarks are more sensitive and

report occasional heartbeat emission deadline misses until

η ≥ 25ms, due to contentions on the access to hardware

network resources.

The latency performance (left graph) and bandwidth perfor-

mance (center graph) are barely affected by low frequencies

of heartbeat emissions. For higher frequencies, the overhead

generated by the noise can reach approximately 10%. The

bandwidth performance is less impacted overall than the la-

tency, especially for point-to-point bandwidth, which remains

unchanged for all but the most extreme values of η. The

application performance (Linpack, right graph) exhibits no ob-

servable performance degradation for η ≥ 100ms. For higher

frequencies, the performance degradation remains contained

under 2%.

D. Failure Detection Time

Figure 7 presents the behavior observed when injecting

failures. The first graph (left) presents the time to reach

a stable state when injecting 1 to 8 failures for a varying

number of nodes. After synchronizing, the desired number of

MPI processes (whose ranks are chosen at random) simulate

a failure. All other processes post an any-source reception.

When the reception raises a process failure exception (the only

possible outcome for this non-matched any-source reception),

the process counts the number of locally known failed pro-

cesses, and if it does not contain all injected failures, repeats

the reception. The time at which all failures have been locally

observed is reported at each rank. We observe that for small

scales, the reported delay is consistently close to δ. If emitters

were sending heartbeats to their observer at random starting

time, we would expect the detection time to be closer to

δ − η/2; however, as all processes start to sending heartbeats

to their observer at the end of the MPI_Init function,

they are almost synchronized, and for all runs we observe

a consistent delay at small scale. At larger scale, processes

leave MPI_Init at a more variable date, and the average

starts to converge toward the theoretical bound. This observa-

tion matches the model, considering that in this scenario all

failures are “simultaneous”, and that the random allocation of

failures has a low probability of hurting observer/emitter pairs.

Consequently, the detection and propagation of each of these

failures progresses concurrently and do not suffer from the

cumulative effect of detecting multiple predecessors’ failures

on the ring.

The second experiment (center in Figure 7) investigates the

effect of collisions on the reliable broadcast propagation delay.

The benchmark is similar to the previous experiment, except

that before a process simulates a failure, it sends its observer a

special “trigger heartbeat”, which initiates an immediate prop-

agation reporting it dead, without waiting for the δ timeout.

The rest of the observation protocol remains unchanged (i.e.,

heartbeats are exchanged between live processes with an η
period, and the observer of the injection process switches to

observing the predecessor). We then present the increase in

the average duration of the reliable broadcast when multiple

broadcasts are progressing concurrently. To simplify the proof

of the upper bound on stabilization time (Theorem 1), we have

considered that successive broadcasts are totally sequential.

This is an admittedly pessimistic hypothesis, and indeed,

performing two concurrent propagations does not significantly

increase the delay, as the two reliable broadcasts can actually
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overlap almost completely. However, starting from 4, and,

more prominently, for 8 concurrent broadcasts, the average

completion time is significantly increased. Considering the

small size of the messages, the bandwidth requirements are

small, and contention on port access is indeed the major cause

of the imperfect overlap between these concurrent broadcasts,

therefore vindicating the importance of considering a port-

limited model during the design of the failure detector and

propagation algorithms.

The last experiment (right in Figure 7) presents the per-

formance of the agreement algorithm after failures have been

injected. The authors of [14] presented a similar performance

result for their agreement algorithm. In their results, the

agreement performance was severely impacted when failure

were discovered during the agreement (with the failure free

performance of 80μs increasing to approximatively 80ms), an

effect the authors claim is due to failure detection overhead.

In their work, failure detection was delegated to an ORTE

based RAS service, responsible for detecting and propagating

failures. In this experiment, we strive to recreate as closely

as possible this setup, except that we deploy our failure

detector in lieu of the ORTE RAS service. We consider the

same implementation of the agreement, on 6,000 Titan cores

(the same number of cores they deployed on the generally

similar Cray XC30 Darter system). Some in-band detection

capabilities are active, in particular, failure of shared-memory

sibling ranks are reported by the node’s local operating system.

With the replacement of the ORTE RAS service by our failure

detector algorithm, the time to completion of the agreement

algorithm decreases to below 1.5ms (a 50x improvement). This

is due to the faster propagation of failure knowledge among

the agreement participants: instead of waiting for (long) in-

band timeouts or ORTE RAS notification, a process whose

parent or children have failed can observe the condition much

earlier, and start the on-line mending of the fan-in/fan-out tree

topology at an earlier date. Interestingly, previously hidden

performance issues become visible, as failure detection is

not the dominant cost anymore: we observe that the perfor-

mance of the agreement decreases linearly with the number

of detected failures, a behavior that can be attributed to the

agreement algorithm performing a linear scanning of the group

when a failure is reported.

VI. RELATED WORK

In this section, we survey related work on failure detectors

and then on fault-tolerant broadcast algorithms.

A. Failure detectors

A number of failure detection (FD) algorithms have been

proposed in the literature. Most current implementations of

FDs are based on an all-to-all communication approach where

each node periodically sends heartbeat messages to all nodes.

Because they consider a fully connected set of known nodes

that communicate in an all-to-all manner, these implementa-

tions are not appropriate for platforms equipped with a large

number of nodes. Several efforts have been made towards

scaling up failure detectors implementations [2], [22]. An al-

ternative approach for implementing scalable failure detectors

is to use gossip-like protocols where nodes randomly choose

a few other nodes with whom they exchange their failure

information [29], [12], [13], [18], [28]. Targeting HPC compu-

tations at scale, a scalable failure detector is propsoed in [19],

based on observing random nodes and gossiping information.

In their protocol, each ping message transmits information on

all currently known failures, either via a liveness matrix or in

compressed form.

Practically, gossip approaches bring along redundant failure

information which degrades their scalability. Furthermore, the

randomization used by gossip protocols makes the definition

of timeout values difficult, since the monitoring sets change

often over time. In order to eventually avoid false detections,

these techniques tend to oversize their timeouts, which results

in longer detection times. Theoretically, gossip approaches

introduce random detection and propagation times, whose

worst-case with a prescribed risk factor are hard to bound3.

In contrast, our algorithm follows a deterministic detection

and propagation topology with (i) constant-size heartbeats and

well-defined delays, (ii) a single observer, (iii) a logarithmic-

time propagation, and (iv) a guaranteed worst-time to stabiliza-

tion, thereby achieving all the goals of randomized methods

with a deterministic implementation.

B. Fault-Tolerant Broadcast

Fault-tolerant broadcasting algorithms have been exten-

sively studied, and we refer the reader to the surveys in [24],

[16]. A key-concept is the fault-tolerant diameter of the inter-

connection graph, which is defined as the maximum length

of the longest path in the graph when a given number of

(arbitrarily chosen) nodes have failed [21]. The main objective

in this context is to identify classes of overlay networks

whose fault-tolerant diameter is close to their initial (fault-

free) diameter, even when allowing a number of failures

close to their minimal degree (allowing more failures than

the minimal degree could disconnect the graph). Furthermore,

these overlay networks should provide enough vertex-disjoint

paths for broadcast algorithms to resist that many failures.

Research has concentrated on regular graphs (where all

vertices have the same degree): hypercubes [21], [25], [11],

binomial graphs [1] or circulant networks [23]. For all these

graphs, efficient broadcast algorithms have been proposed.

These algorithms tolerate a number of failures up to their

degree minus one, and execute within a number of steps

(in the one-port model) that does not exceed twice their

original diameter. However, to the best of our knowledge,

such algorithms require the number of nodes in the graph

to be a power of two, or a constant times a power of two,

while we need an algorithm for an arbitrary number of nodes.

This motivates our solution based upon a double diffusion (see

Section II).

3Absolute worst-case times are infinite, as some nodes could be observed
only after an unbounded delay. To give a simple example, after an observation
round with n nodes randomly selecting their targets, in expectation, n/e nodes
will not be observed (where e = 2.718 is Euler’s number).
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VII. CONCLUSION

Failure detection is a critical service for resilience. The

failure detector presented in this work relies on heartbeats,

timeouts, and communication bounds to provide a reliable

solution that works at scale, independently of the type of

faults that create permanent node failures. Our study reveals

a complicated tradeoff between system noise, detection time,

and risks: a low detection time would demand a low latency

in the detection of failures, thus a tight approximation of the

communication bound, increasing the risk of a false positive,

and a frequent emission of heartbeat messages, increasing the

system noise generated by the failure detector. We proposed

a scalable algorithm capable of tolerating high frequency

failures, and proved a theoretical upper bound to the time

required to reconfigure the system in a state that allows

new failures to strike; therefore the algorithm can tolerate

an arbitrary number of failures, provided that they do not

strike with higher frequency. The algorithm was implemented

in a resilient MPI distribution, which we used to assess its

performance and impact on applications at large scale. The

performance evaluation shows that for reasonable values of

detection time, the ring strategy for detection introduces a

negligible or non-measurable amount of additional noise in

the system, while the high performance reliable broadcast

strategy for notification allows for quickly disseminating the

fault information, once detected by the observing process.

Implementation considerations lead us to advocate that the

detection part of the service should be provided at a lower

levels of the software stack, either inside the operating system,

or inside the interconnect hardware: active heartbeats to probe

the activity of remote nodes could be handled by these lower

levels without measurable noise, and with tighter bounds, since

the other levels of the software stack would not introduce

additional components to the noise. Future work should focus

on providing this capability, and on evaluating the approach

to address the tradeoff between detection time and risk.
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